

HYDROCAM®

The ultimate in flexible cam design*

HYDROCAM® - The standard cam with user flexibility

powerful • compact • reliable • interchangeable

HYDROCAM® transfers the vertical press stroke into a precise cam action patenred hydraulic technology. Standard stocks units combine into systems. Customers can easily mount their own tooling to the machinable front plate creating a customized application.

Here is how HYDROCAM® operates:

The press ram lowers, activating the piston rod of the *H1* pump. Hydraulic pressure or force is transfered high pressure hoses to one or multiple *H2* units.

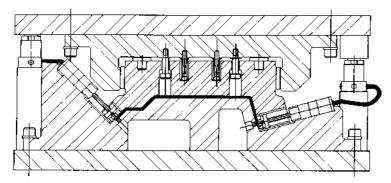
The *H2* unit has an adjustable return force using proven nitrogen gas technology.

- One H1 can serve up to four H2 units.
- Mount the *H2* at any angle up to 2 meters aqay from *H1*.
- Each H2 can deliver from 2 to 31 tons of force.
- **H2** units are aviable with 25, 50, 75 and 100 mm stroke lenghts depending on model selected.
- Ideal for retrofits and engineering changes.

Index

Introduction HYDROCAM ®	2-3
Selecting charts	4
Calculations	5
H2 Chart	6
H2 Specifications	7
H1 Chart	8
H1 Specifications	9
Installations Guide	10-11
Nitrogen Accessories Control Panel	12
Nitrogen Accessories Fittings	13
Hydraulic Fittings	14
Worksheet for HYDROCAM®	15

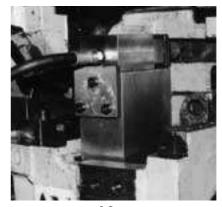
Piercing • Forming • Trimming


HYDROCAM® has been carefully designed for maximum user flexibility.

Our customers can easily mount the specialized tooling required for their application to our standard HYDROCAM® systems.

Order standard units from stock.

option to monitor and adjust nitrogen pressure in the *H2* piercing/forming unit.


Automotive die ... piercing

HYDROCAM® – Ideal for retrofits and engineering changes

Before

- Costly and complicated mechanical cams.
- Increased maintenanced costs due to mechanical wear.

After

- HYDROCAM® makes retrofits easy. Decreased maintenanced costs
 - and downtime.

HYDROCAM® - Selecting charts

Selecting chart H1

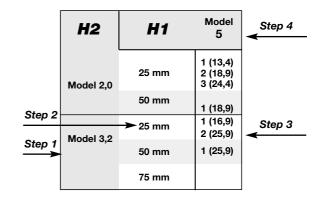
H1		Model										
	Model	5	8	13	20	40	66					
VT Total Volume	cm³	50	80	130	200	400	660					
V1 Volume/Stroke mm	cm³	2,23	3,32	3,32	7,85	13,27	13,27					

Selecting chart H2

Н2		Model									
	Model	Model 2,0 3,2 5,0 7,8 12,5 20,0 31,0									
Force	kN	19,63	31,98	49,98	78,01	124,73	199,98	309,97			
VC Volume/Stroke mm	cm³/mm	0,49	0,8	1,26	1,97	3,11	5,03	7,85			
Max. Force	kN	17,87	28,85	45,45	70,94	113,19	188,19	288,17			
Return Force at 100 bar	kN	1,76	3,13	4,53	7,07	11,54	11,79	21,8			

Note: 1kN = 102 kg

Quick selecting chart


H2	H1	Model 5	Model 8	Model 13	Model 20	Model 40	Model 66
Model 2,0	25 mm	1 (13,4) 2 (18,9) 3 (24,4)	4 (22.7)				
Woder 2,0	50 mm	1 (18,9)	2 (22,7)	3 (30,1) 4 (37,1)			
	25 mm	1 (16,9) 2 (25,9)	3 (26,0)	4 (32,0)			
Model 3,2	50 mm	1 (25,9)	1 (20,0)	2 (32,0)	3 (32,2) 4 (28,3)		
	75 mm		1 (26,0)	1 (26,0)	2 (23,2) 3 (30,9)	4 (26,0)	
	25 mm	1 (22,1)	2 (26,9)	3 (36,4)	4 (24,0)		
Model 5,0	50 mm		1 (26,9)	1 (26,9)	2 (24,0)	3 (22,2) 4 (26,9)	
	75 mm			1 (36,4)	1 (20,0)	2 (22,2) 3 (29,3)	4 (36,4)
Model 7,8	25 mm		1 (22,8)	2 (37,6)	3 (26,8)	4 (22,8)	
Wodel 7,8	50 mm			1 (37,6)	1 (20,5)	2 (22,8) 3 (30,2)	4 (37,6)
	75 mm				1 (26,8)	2 (30,2)	3 (41,4) 4 (52,5)
Model 12,5	25 mm			1 (31,4)	2 (27,8)	3 (25,5) 4 (31,4)	
ŕ	50 mm				1 (27,8)	2 (31,4)	3 (43,1)
	75 mm					1 (25,5)	2 (43,1)
	100 mm					1 (31,4)	1 (31,4)
Model 20,0	25 mm				1 (24,0)	2 (26,9)	3 (36,4) 4 (45,9)
	50 mm					1 (26,9)	2 (45,9)
	75 mm					1 (36,4)	1 (36,4)
	100 mm						1 (45,9)
Model 31,0	25 mm					1 (22,7)	2 (37,5) 3 (52,3)
	50 mm						1 (37,5)
	75 mm						1 (52,3)

Example:

Step 1 and 2 Locate the *H2* unit and its stroke. In this example: model 3.2, stroke 25 mm.

Step 3 Locate the number of *H2* units to the right of the stroke lenght. The *H1* pump's piston rod travel is listed next to that number in parentheses.

Step 4 Read up to the column heading. This is the *H1* model you need. In his example: *H1*, model 5.

HYDROCAM® - Calculations

Example:

Piercing of 2 holes on each ends of a formed part.

Hole diameter: 12 mm, Thickness of material 2 mm;

Material strenghtness: τ_{aB} 370 N/mm²

The piercing units makes a stroke of 17 mm before they were stopped by

external tool stops.

Piercing unit HYDROCAM H2

$$A = d \bullet \pi \bullet s = 12 \ mm \bullet \pi \bullet 2 \ mm = 75,4 \ mm^2$$

$$F = A \cdot \tau_{aB} = 75.4 \text{ mm}^2 \cdot 370 \text{ N/mm}^2 = 27898 \text{ N} = 27.9 \text{ kN}$$

Note the needed force F should be maximum of 80 % of the working force F₂:

$$F_{2min} = \frac{F}{0.8} = \frac{27.9 \text{ kN}}{0.8} = 34.87 \text{ kN}$$

Need: Piercing unit HYDROCAM 2 - 5 x 25

A = work surface

F = force

 τ_{aB} = max. material tensile strenght

$$F_{2min}$$
 = working force

Pump HYDROCAM H1

Needed volume for each piercing unit V_{N1}

$$V_{NI} = VC \bullet Hub = 1,26 \text{ cm}^3/\text{mm} \bullet 17 \text{ mm} = 21,42 \text{ cm}^3$$

$$VT = V_{N1} \cdot 2 = 21,42 \text{ cm}^3 \cdot 2 = 42,84 \text{ cm}^3$$

Note the needed volume should be maximum of 90% of the Total volume VT:

$$VT_{min} = \frac{V}{0.9} = \frac{42,84 \text{ cm}^3}{0.9} = 47,6 \text{ cm}^3$$

Need: Pump HYDROCAM 1 - 5

 V_{N1} = working volume of H2

VC = volume/stroke H2 (cm³/mm)

Stroke = real stroke H2

 VT_{min} = needed volume H1

VT = total volume

Max. Volume stroke Ht4

$$Ht4 = \frac{VT}{V1} = \frac{42,84 \text{ cm}^3}{2,23 \text{ cm}^3/\text{mm}} = 19,2 \text{ mm}$$

Total stroke H

$$H = Ht4 + Ht5 = 19.2 \ mm + 8 \ mm = 27.2 \ mm$$

V1 = volume/mm stroke H1

Ht4 = max. working stroke H1

Ht3 = total Piston stroke H1

Ht5 = approach stroke H1

Optional stroke gauge ring thickness t

$$t = Ht3 - H = 31 mm - 27,2 mm = 3,8 mm$$

HYDROCAM® - H2 Piercing unit

Compact power with user flexibility

The **H2** piercing unit can be ordered from Danly with high pressure hose and connectors you specify.

The **H2** has seven standard stock sizes. The amount of force needed determines the size. Units deliver from 2 up to 31 tons of force at any angle selected. Standard stroke lenghts of 25, 50, 75 and 100 mm, depending on unit size.

Standard features:

- **H2** unit comes with adjustable nitrogen gas return force.
- Machinable front plate for customers to mount their tooling by application.
- Compact and interchangeable for today's demanding applications.

Popular options:

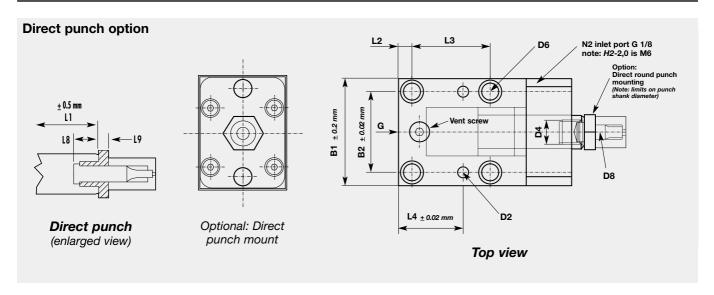
- Control panel option: DANLY recommends using this to monitor and adjust nitrogen return force.
- Direct punch option: Remove front plate and piston will accept a head type punch. Punch size and shank limitations are noted on the *H2* dimension chart, see D8 below. A special "lockung nut" must be ordered.
- Oil return option: Used on special applications. Must be engineered, please call Danly for support.

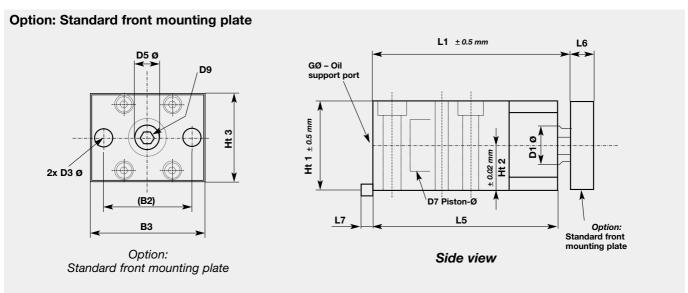
Mounting suggestions

- Mount *H2* units against keys.
- Provide a mounting platform that will resist any deflection.
- The standard front plate should be guided during work stroke. Avoid off-centered loading.
- Use always an stop block to limit the stroke of the unit H2.

Example how to order:

Size Stroke Option: HYDROCAM® H2 - 5,0 x 25 + Standard front plate


Note: 1 kN = 102 kg


H2 Chart Piercing unit

110				Mode			
H2	2,0	3,2	5,0		12,5	20,0	31,0
Force	20 kN	32 kN	50 kN	78 kN	125 kN		310 kN
L1 Stroke 25 mm	108	128	141	149	172	190	211
L1 Stroke 50 mm	133	154	166	174	197	215	236
L1 Stroke 75 mm	-	179	191	199	222	240	261
L1 Stroke 100 mm	-	-	-	-	247	265	-
L2	8	10	10	12	15	15	20
L3	36	52	55	64	64	77	82
L4	31	42	45	48	55	63	70
L5 Stroke 25 mm	101	120	132	138	158	172	190
L5 Stroke 50 mm	126	145	157	163	183	197	215
L5 Stroke 75 mm	-	170	182	188	208	222	240
L5 Stroke 100 mm	-	-	ı	ı	233	247	265
L6	12	15	20	22	25	30	35
L7	6	8	10	12	16	20	24
B1	60	75	85	100	130	140	180
B2	44	55	65	76	100	110	140
В3	59	74	84	99	129	139	179
Ht1	50	60	70	80	100	110	150
Ht2	25	30	35	40	50	55	75
Ht3	25	30	35	40	50	55	75
Ht4	49	59	69	79	99	109	149
D1	20	25	32	40	50	70	85
D2 H7 (x2)	8	10	10	12	12	16	20
D3 H7 g6 (x2)	12	12	14	16	20	20	24
D4 Depth	M12x1,0 17	M16x1,5 17	M20x1,5 20	M30x2,0 21	M36x2,0 32	M48x2,0 38	M56x2,0 48
D5	15	18	20	26	32	32	32
D6 (DIN 75 Km) (x4)	8	10	10	12	16	16	20
D7 Piston-Ø	25	32	40	50	63	80	100
D8 Nominal head-Ø Punch shank-Ø	-	13 10	16 13	23 20	28 25	35 32	43 40
D9 Thread size of bolt	M8	M10	M12	M16	M20	M20	M20
G	G 1/4	G 1/4	G 1/4	G 1/4	G 3/8	G 3/8	G 3/8

HYDROCAM® - H2 Specifications

Cutaway photo:

HYDROCAM® - H1 Pump

The *H1* pump is aviable in six standard sizes. Each pump has four ports to activate up to four *H2* units. The quality, size and stroke lenght of the *H2* units hosed to each pump determines the size and oil volume of the pump needed. Pumps can be up to six feet away from *H2* units.

This allows you to free up critical die space and balance die loads.

Piston rod travel

Piston rod travel controls oil volume going to *H2* unit(s). Our selection example on page 5 provides you the formulas for calculation.

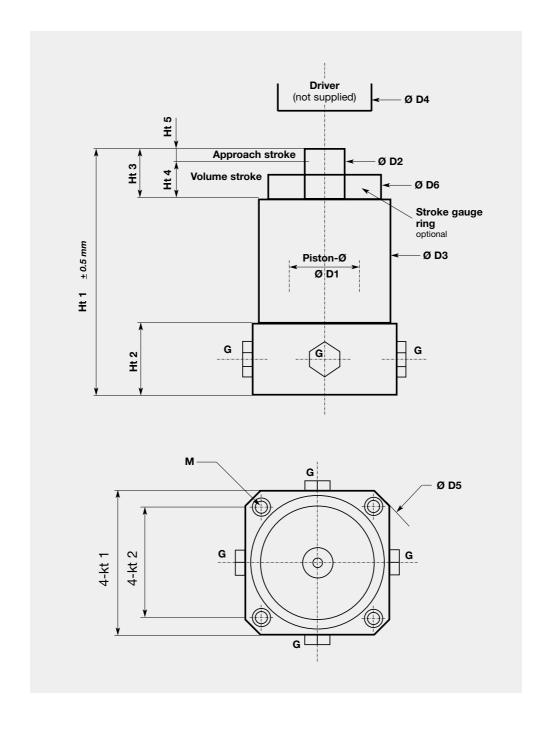
Multiple **H2** units activated by a common pump will effect piston rod travel, find the quick select chart on page 4.

Optional stroke gauge ring

Used as a visual gauge to assist in set-up. Ring is located on top pf pump boby and made to the appropriate height based upon piston rod travel calculation. This stroke gauge ring is not a stop block. See quick select chart on page 4 and calculate example on page 5 how to calculate.

Mounting Suggestions:

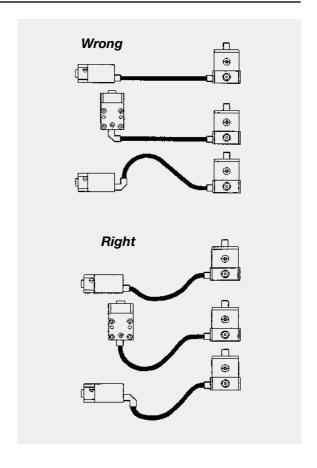
- The piston rod must always face up, perpendicular to ram/driver.
 Always activate piston rod with driver that is larger in diameter than the piston rod.
- Driver may need to be custom ground to exact working height during HYDROCAM® system set-up.
- Locate pump higher in elevation than all *H2* units it activates.
- Specify hose length and allow for safe access from pump to *H2* unit(s).
 Always use stop blocks.
- Die storage blocks are recommended. Never store pump with piston rod depressed.

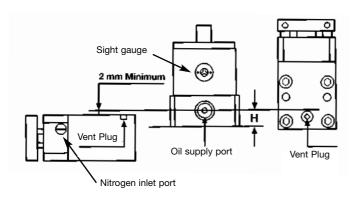

H1 Chart Pump

H1				Mode			
ПП		5	8	13	20	40	66
VT Total volume	cm ³	50	80	130	200	400	660
V1 Volume/Stroke per mm	cm ³	2,23	3,32	3,32	7,85	13,27	13,27
Ht 1 Die open hight	mm	133	145	195	166	195	275
Ht 2 Height of base	mm	41	42	57	46	50	70
Ht 3 Total stroke	mm	31	32	47	34	38	58
Ht 4 max. volume stroke	mm	23	24	39	26	30	50
Ht 5 Approach stroke	mm	8	8	8	8	8	8
D1 Piston-Ø	mm	53,34	65	65	100	130	130
D2 Rod-Ø	mm	20	25	25	50	60	60
D3 Body-Ø	mm	82	100	100	147	182	182
D4 min. (not supported)	mm	45	55	55	95	120	120
D5 Base cross corners	mm	120	141	141	203	246	246
D6 Optional gauge	mm	80	98	98	145	180	180
4-kt 1	mm	90	105	105	150	185	185
4-kt 2	mm	72	84	84	125	150	150
M (x4)	mm	Km 8	Km 10	Km 12	Km 12	Km 16	Km 16
G (x4)	BSPP	G 1/4	G 1/4	G 1/4	G 3/8	G 3/8	G 3/8
P Piston area	cm²	22,3	33,2	33,2	78,5	132,7	132,7

Example how to order: HYDROCAM® H1 - 20

HYDROCAM® - H1 Specifications




HYDROCAM® Installations guide

Connecting the *H1* pump, *H2* piercing unit(s) and Nitrogen return control panel.

- 1. Minimize the number of fittings in the hose system.
- 2. Do not use a hose system that involves a fitting to fitting to fitting series of connections.
- 3. Hose each identical *H2* unit to a *H1* Pump with ist own hose. Do not hose in series. Provide simple access for hose routing. Use only approved hose and fittings.
- 4. Provide additional hose length to ensure appropriate radius and safe routing. Avoid high spots in the oil hose route that will trap and create air pockets.
- 5. Maximum hose lenght is 2 m. Do not substitute the supplied hydraulic hose with a smaller or lighter duty hose.
- 6. Rotating the *H1* Pump 45° may simplify hose routing.
- 7. Avoid turning fittings. If a hose turn requires a turning fitting, select a 45° fitting as a choice and a 90° fitting second. See page 12, 13 and 14 for accessories.

Requied positions of H1 as compared to H2

NOTE: We understand that a few applications will exceed this guide. Contact your representative for application support.

Model	H dimensions
HYDROCAM H1-5	21 mm
HYDROCAM H1-8	25 mm
HYDROCAM H1-13	25 mm
HYDROCAM H1-20	25 mm
HYDROCAM H1-40	30 mm
HYDROCAM H1-66	30 mm

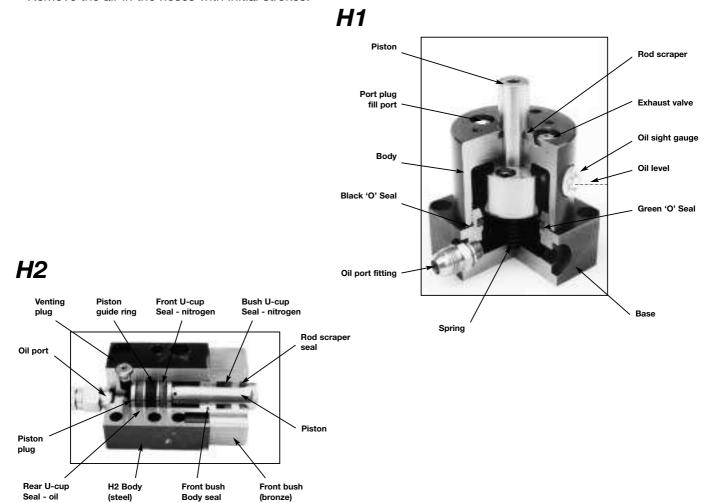
See above for proper positioning of the H1 pump.

- Standard HYDROCAM ** systems operate using a simple hydraulic driven extension with a nitrogen return and require no special conditions or procedure to operate them.
- DO NOT SUBSTITUTE ANY COMPONENT IN THIS SYSTEM! IMPROPER SUBSTITUTIONS MAY RESULT IN PERFORMANCE PROBLEMS ANS/OR SAFETY HAZARDS.
- USE ONLY A PREMIUM GRADE HYDRAULIC OIL.
- As with any air, hydraulic or nitrogen cylinder, neither the *H1* Pump nor the *H2* unit is designed to withstand side-thrust forces. Properly guiding the tool and cam station will limit damage to the cylinder and increase seal life
- THE MOST COMMON HYDROCAM® OPERATING PROBLEM IS AIR CAUGHT IN THE HOSE SYSTEM. ENSURE THAT YOU HAVE PROPERLY LOCATED THE H1 PUMP, AVOIDED HIGH SPOTS IN THE HOSE SYSTEM AND BLED THE SYSTEM OF AIR.
- Complete engeneering assistance, seminars and service support are available should a need arise for any our full line of metal forming products. Contact your representative for details.

HYDROCAM® Cutaway photos

Follow the instructions for engeneering and production to give a long lifetime of HYDROCAM® applications:

Installation H2

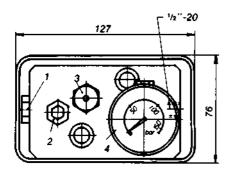

- The H2 piercing units should alway fixed by a thrust key.
- The pins gives only the position.
- The H2 unit is designed to provide force, not guidance. As with any air, hydraulic or nitrogen cylinder, neither the H1 Pump nor the H2 unit is designed to withstand side-thrust forces. Properly guiding the tool and cam station will minimize wear to the cylinders and increase seal life. This is especially true in applications with long strokes, heavy or large tooling mounted, or in applications that approach the work in a non-perpendicular presentation.

Note for secure:

Only use fittings and hoses which are proofed to run with 400 bar.

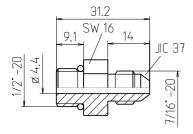
Installation H1

- Use max. hoses with 2 m.
- The Position of the piston should always be right angled and vertical to the driver.
- It don't work reverse.
- Put the Pump higher than the piercing unit(s).
- Limit the stroke of the tool with a stop block.
- Don't use more stroke than calculated, compare with the gauge stop ring thickness.
- Fill oil in up to to the middle of the oil sight glass.
- · Remove the air in the hoses with initial strokes.


Nitrogen accessories control panel

Control panel KA 110-01-250

DANLY suggests to run each *H2* with a single Control Panel. It can use to fill with gas and monitor the pressure. Each control console has build in a safety plug.


Order-No. KA11001-250

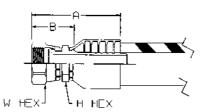
Location of mounting holes and fill connection

- 1. Safety plug
- 4. Pressure gauge
- 2. Inlet valve
- 3. Exhaust valve

Fitting NP1000-3 Order-No. NP1000-3

Fill and control panel RTUAL-04.0

This is a multi functual unit. Used to refill and monitor the pressure of gas filled *H2* systems.


Hoses to connect the control panels

Important: The lenght should be 5% longer than the measured distance. While the systems are filled with high pressured gas the lenght of the hoses will be decreased under pressure.

Note: Rebuild the inlet valve of the hoses units while working with an assembled control panel.

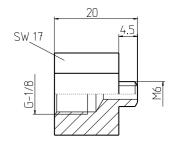
Order-No. RTUAL-04.0

37° JIC Hose

Order-No. RT520410655-(*) (*) = lenght of the hoses

Adaptor for *H2-2*,0 Order-No. HM6G18

Casing
Pressure
adjusting screw

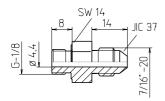

Body Threaded plug Inlet valve

8 Circlips9 O-Ring

Outlet valve Retaining ring

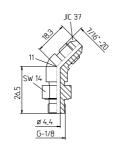
O-Ring

11 O-Ring12 Gauge



Part-No.		Hose I.D.	Hose O.D.	Max. oper. pressure (bar)	Min. Burst pressure (bar)	Min. Bend radius	Thread size	Α	6-kt H	6-kt W	В
RT520410655-(*)	mm	4,8	10,9	345	1380	38	7/16-20	55	16	17	30

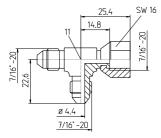
37° Fittings


Straight connector*

Order-No. RT4F40MX-S

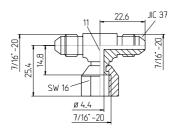
Swivel nut elbow 135°*

DANLY

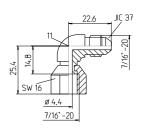

Order-No. RT4V40MX-S

22.6 JIC 37

90° Degree elbow*


Order-No. RT4C40MX-S
* not to connect directly at HYDROCAM

Swivel nut run tee

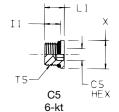

Order-No. RT4R6X-S

Swivel nut run tee


Order-No. RT4S6X-S

90° Degree elbow

Order-No. RT4C6X-S


Straight connector Connector for HYDROCAM

Order-No. NP1100-3

Hollow hex plug

Part-No.	T 5		6-kt C5	I1	L1	χø	Torque (Nm)
VSTI-R1/8ED	G-1/8	mm	5	8	12	14	10
VSTI-R1/4ED	G-1/4	mm	6	12	17	19	30
VSTI-R3/8ED	G-3/8	mm	8	12	17	22	35

Quick connect fittings

Order-No.:

RT-QDM-6554-A male RT-QDF-0202 (G1/4) Europa female

Connecting hose for nitrogen-gas-bottle

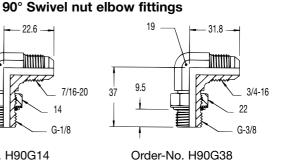
Order-No. NPLS01

Adaptor

Order-No. HDG14JIC12

Quick connector

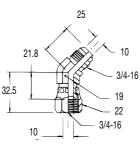
Order-No. RT-QDF-0202



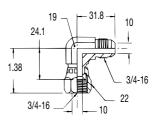
16.7

Hydraulic fittings

Straight fittings 9.5 9.5 16.7 Order-No. HDG14 Order-No. HDG38

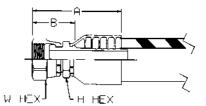

11 6.3 26 7/16-20 G-1/8 Order-No. H90G14

45° Swivel nut elbow


19 9.5 33 G-3/8 Order-No. H45G38

135° Swivel nut elbow

Order-No. HJIC135


90° Swivel nut elbow fitting

Order-No. HJIC90

Flexible high pressure hoses and connectors

- Minimize the number of fittings in the hose system.
- Do not use a hose system that involves a fitting to fitting to fitting of connections.
- Hose easch H2 unit to an H1 pump with ist own hose. Do not hose in series. Provide simple access for hose routing.
- Provide additional hose lenght to ensure appropriate radius and safty routing. Avoid high spots in the oil hose route that will trap and create pockets.

Hose to connect H1 to H2

Part-No.		Hose I.D.	Hose O.D.	Max. oper. pressure (bar)	Min. Burst pressure (bar)	Min. Bend radius	Thread size	A	6-kt H	6-kt W	В
H1H2-10	mm	10	21	445	1780	180	3/4-16	61	18	22	34
H1H2-12	mm	12	25	415	1660	230	3/4-16	66	21	22	36

In case of order the hose lenght is needed.

DANLY Hand pump of 1,8 litre capacity (250 bar maximum output)

Reduce HYDROCAM® Set-up time by using this hand pump. This oil hand pump can be used for three different purposes:

- 1. Directly connected to the H2 unit, it moves the piston to allow the toolmaker to align punch and die within the tool.
- 2. Filling the H1 pump when the system is in the
- 3. Filling the oil/nitrogen-accumulator if using oil return option.

DANLY suggest to use filtered oil SHELL TELLUS 32. Order-No. HYDPUMPAS

Extending **H2** piston rod

Filling oil drive system

Filling oil return system

Worksheet for DANLY HYDROCAM®

For fast quotes copy this and fax DA Name:					DA	DANLY No:				
Company:					Da	ate:				
Address:										
City: State:										
Telephone:	Fax:									
Project, Part No.:										
Selection Criteria		Are you	ı piercing l	holes?						
Part material:				В			B			
Part thickness:			A		→					
Tensile strength:	N/mm²				_ \\`					
Stripping force:			A	A	В	A	A	В		
RAM travel of press:	_		mm	mm	mm	mm	mm	mm		
RAM Strokes/minute:		hole #1								
CAM Stroke length:		hole #2								
D. 101 //		hole #3								
Proximity H1 pump to CAM unit		hole #4								
• The <i>H1</i> pump will be connected by:		Punch/m	natrix clearai	nce per	side:					
Hose length		(% of part thickness) What type of stripper?								
Special fittings needed:			d used to str	-						
			used for all h	-						
Are you forming? Describe form:			ents	_						
		What C	AM stroke	length	n need	led?				
		H2 #1 _	r	nm to b	e pierc	ing hole #1				
		H2 #2 _	r	nm to b	e pierc	ing hole #2				
		H2 #3 _	r	nm to b	e pierc	ing hole #3				
Diameter and the second second		H2 #4 _	r	nm to b	e pierc	ing hole #4				
Please note special concerns/timing:		Do you	want a sta	ndard f	front p	late:				
		or direc	t punch mo	ount op	otion: _					
			ty nitrogen CAM unit		contro	ol				
		The cont	rol panel wil	l be cor	nnected	l by:				
		• Hose le	ength:							
		Special	l fittings nee	eded:						
		1								

Sent your worksheet paper for inquiries and orders to:

The Innovator of Our Industry SM

Our factories and offices:

U.S.A. • U.K. • France • Belgium • Germany • Sweden • Netherlands • Singapore • India

DANLY UK LIMITED

(UK Sales Office) Maybrook House, Queensway Halesowen West Midlands B63 4AH

> Tel: 0121 585 7171 Fax: 0121 585 7272

E-mail: sales@danlyuk.com Website: www.danly.co.uk

DANLY UK LIMITED

(Manufacturing Division)
2 Aintree Road, Perivale
Greenford
Middlesex
UB6 7LA

Tel: 0208 998 5381 Fax: 0208 991 2461